skip to main content


Search for: All records

Creators/Authors contains: "Shearer, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$ -rheology, which postulates that the bulk friction coefficient $\unicode[STIX]{x1D707}$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $\unicode[STIX]{x1D719}$ are functions of the inertial number $I$ only. Although the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$ -rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$ -rheology that does not suffer from such defects is proposed. In the framework of compressible $I$ -dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $\unicode[STIX]{x1D707}(I)$ and $\unicode[STIX]{x1D6F7}(I)$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations. 
    more » « less
  2. Abstract

    Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin‐Bona‐Mahony (BBM) equationare studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg‐de Vries equation. The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two‐phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two‐phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self‐similar solution of the BBM equation whose limit asis a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schrödinger equations. The complex interplay between nonlocality, nonlinearity, and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.

     
    more » « less
  3. Abstract

    The nonlinear Schrödinger (NLS) equation and the Whitham modulation equations both describe slowly varying, locally periodic nonlinear wavetrains, albeit in differing amplitude‐frequency domains. In this paper, we take advantage of the overlapping asymptotic regime that applies to both the NLS and Whitham modulation descriptions in order to develop a universal analytical description of dispersive shock waves (DSWs) generated in Riemann problems for a broad class of integrable and nonintegrable nonlinear dispersive equations. The proposed method extends DSW fitting theory that prescribes the motion of a DSW's edges into the DSW's interior, that is, this work reveals the DSW structure. Our approach also provides a natural framework in which to analyze DSW stability. We consider several representative, physically relevant examples that illustrate the efficacy of the developed general theory. Comparisons with direct numerical simulations show that inclusion of higher order terms in the NLS equation enables a remarkably accurate description of the DSW structure in a broad region that extends from the harmonic, small amplitude edge.

     
    more » « less